博客
关于我
LeetCode 64. Minimum Path Sum
阅读量:115 次
发布时间:2019-02-26

本文共 1205 字,大约阅读时间需要 4 分钟。

一 题目

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:[  [1,3,1],  [1,5,1],  [4,2,1]]Output: 7Explanation: Because the path 1→3→1→1→1 minimizes the sum.

二 分析

medium 级别,题目要求:从二维 数组的左上角到右下角,所有可能的路径中,求经过的元素和最小值。我一开始看以为要使用贪婪算法求右面或者下面的最小值,再看题目元素例子,局部最优解不一定是全局最优解。所以这种方法不行。因为是连着做完一个类型的62,63 的动态规划。所以趁热打铁有连贯性,不然还真懵逼了。这个题目跟之前的 , 类似。

一个解题思路:考虑使用动态规划,我们创建一个二维数组dp,行列数与题目的grid 保持一致。每个位置的值记录了由起始位置(左上角grid[0][0])到此位置的最短距离.

状态转移方程:因为只能右移跟下移,所以 dp[i][j]= min(左面,上面)+grid[i][j].另外特殊情况要提前赋值,比如第一行和第一列,其中第一行的位置只能从左边过来,第一列的位置从能从上面过来。

  代码如下:

public static void main(String[] args) {		int[][] grid ={				{1,3,1},				{1,5,1},				{4,2,1}		};		int res =	minPathSum(grid);		System.out.println(res);	}	public static int minPathSum(int[][] grid) {				int m = grid.length;		int n = grid[0].length;				int[][] dp = new int[m][n];		dp[0][0] = grid[0][0];				//初始化第0列		for(int i=1;i

Runtime: 2 ms, faster than 90.08% of Java online submissions for Minimum Path Sum.

Memory Usage: 42.4 MB, less than 82.43% of Java online submissions forMinimum Path Sum.

转载地址:http://ordy.baihongyu.com/

你可能感兴趣的文章
MySQL多表关联on和where速度对比实测谁更快
查看>>
MySQL多表左右连接查询
查看>>
mysql大批量删除(修改)The total number of locks exceeds the lock table size 错误的解决办法
查看>>
mysql如何做到存在就更新不存就插入_MySQL 索引及优化实战(二)
查看>>
mysql如何删除数据表,被关联的数据表如何删除呢
查看>>
MySQL如何实现ACID ?
查看>>
mysql如何记录数据库响应时间
查看>>
MySQL子查询
查看>>
Mysql字段、索引操作
查看>>
mysql字段的细节(查询自定义的字段[意义-行列转置];UNION ALL;case-when)
查看>>
mysql字段类型不一致导致的索引失效
查看>>
mysql字段类型介绍
查看>>
mysql字段解析逗号分割_MySQL逗号分割字段的行列转换技巧
查看>>
MySQL字符集与排序规则
查看>>
MySQL字符集乱码
查看>>
mysql字符集设置
查看>>
mysql存储IP地址的数据类型
查看>>
mysql存储中文 但是读取乱码_mysql存储中文乱码
查看>>
MySQL存储引擎
查看>>
MySQL存储引擎--MYSIAM和INNODB引擎区别
查看>>